
1.  

2.  
3.  
4.  
5.  
6.  

1.  

2.  

Python
 

The Python SDK, not part of our core offering, provides a Python interface for the Gigya API. The library makes it simple to integrate Gigya

services in your  application. This document is a practical step-by-step guide for programmers who wish to integrate the Gigya service intoPython 

their  application. Follow the steps  to get started, and use the  while implementing.Python  below Library Reference

Note: Gigya supports  x and 3.Python 2.7.

Library Guide 

Please follow these steps to integrate this library in your  application:Python 

Download the zip file from:  Gigya Developer Downloads

The file includes the GSSDK.py and the cacert.pem files. Extract both files to the same location.
Obtain Gigya's APIKey and Secret key.
Import GSSDK.py library into your application.
Log the user in.
Use Gigya's API - Send Requests.
Optional: incorporate security measures.

 

Obtaining Gigya's APIKey and Secret key

Making API calls requires an and a  which are obtained from the  page on the Gigya website. The API Key Secret Key Site Dashboard Secret
must be kept secret and never transmitted to an untrusted client or over insecure networks. The  and the  are requiredKey API Key Secret Key

parameter in each request (further ahead in this document you will find guidance for ).sending requests

 

Importing the GSSDK.py Library into Your Application

To get started, you'll need to import Gigya  SDK to your application:Python 

Copy the file to your  application path.GSSDK.py  Python 

Import the file into your application:GSSDK.py 

from GSSDK import *

You should now be able to use the SDK in your project.

 

Logging the User in

The first interaction with Gigya must always be logging in. If the user is not logged in, you cannot access their social profile nor perform social
activities, such as setting their status.  requires an identified Gigya user (the identification of whom is performed using the pSending requests UID 
arameter) with an . A user session is created when a user logs in via the Gigya service. Log users in through your clientactive session
application using our Web SDK methods: ,  , or using our ready made .socialize.login socialize.notifyLogin Social Login UI

https://developers.gigya.com/display/GD/Python+Reference
https://console.gigya.com/Site/partners/Dashboard.aspx
https://developers.gigya.com/display/GD/socialize.login+JS
https://developers.gigya.com/display/GD/socialize.notifyLogin+REST
https://developers.gigya.com/display/GD/socialize.showLoginUI+JS


To learn more about the login process, see  .Social Login

 

Sending a Request

After you have logged in the user, you may use the  class to access the user profile and perform various activities. This isGSRequest
implemented using GSRequest's   method. The following code sends a request to set the current user's status to "I feel great":send

https://developers.gigya.com/display/GD/Social+Login
https://developers.gigya.com/display/GD/Class+GSRequest+Python
https://developers.gigya.com/display/GD/Class+GSRequest+Python#ClassGSRequestPython-send


1.  
2.  

3.  

4.  

# Define the API-Key and Secret key (the keys can be obtained from your
site setup page on Gigya's website).
apiKey = "PUT-YOUR-APIKEY-HERE"
secretKey = "PUT-YOUR-SECRET-KEY-HERE"

# Step 1 - Defining the request and adding parameters
method = "socialize.setStatus"
params={"uid":"PUT-UID-HERE", "status":"I feel great"}    # Set "uid" to
the user's ID, and "status" to "I feel great"
request = GSRequest(apiKey,secretKey,method,params)

# Step 2 - Sending the request
response = request.send()

# Step 3 - handling the request's response.
if (response.getErrorCode()==0):
    # SUCCESS! response status = OK   
    print "Success in setStatus operation."  
else:
    # Error
    print "Got error on setStatus: " + response.getErrorMessage()
    # You may also log the response: response.getLog()

 

Step 1: Defining the Request and Adding Parameters

Create a  instance:GSRequest

method = "socialize.setStatus"
params={"uid":"PUT-UID-HERE", "status":"I feel great"}    # Set "uid" to
the user's ID, and "status" to "I feel great"
request = GSRequest(apiKey,secretKey,method,params)

 

The parameters of the GSRequest are:

apiKey
secretKey

Note: For information about obtaining these keys, see .above

method - the Gigya API method to call, including namespace. For example: 'socialize.getUserInfo'. Please refer to the REST API
 for the list of available methods.reference

params - In this case the uid and status.

 

Note: In the REST API reference you may find the list of available Gigya API methods and the list of parameters per each method.

 

Step 2: Sending the Request

Execute 's  method:GSRequest send

https://developers.gigya.com/display/GD/Class+GSRequest+PHP
https://developers.gigya.com/display/GD/Socialize+REST
https://developers.gigya.com/display/GD/Socialize+REST
https://developers.gigya.com/display/GD/Socialize+REST
https://developers.gigya.com/display/GD/Class+GSRequest+Python
https://developers.gigya.com/display/GD/Class+GSRequest+Python#ClassGSRequestPython-send


response = request.send()

The method returns a GSResponse object, which is handled in the next step.

 

Note: By default, requests to Gigya APIs are sent using the "us1.gigya.com" domain. If your site has been set up to use another of
Gigya's data centers, you must specify that the request should be sent to that specific data center by adding the following line of
code before calling the Send method:

request.setAPIDomain("<Data_Center>")

Where  is:<Data_Center>

us1.gigya.com - For the US data center.
eu1.gigya.com - For the European data center.
au1.gigya.com - For the Australian data center.
ru1.gigya.com - For the Russian data center.
cn1.gigya-api.cn - For the Chinese data center.

If you are not sure of your site's data center, see .Finding Your Data Center

See the documentation for more information.GSRequest 

 

Step 3: Handling the Response

Use the  object to check the status of the response, and to receive response data:GSResponse

if (response.getErrorCode()==0):
    # SUCCESS! response status = OK  
    print "Success in setStatus operation." 
else:
    # Error
    print "Got error on setStatus: " + response.getErrorMessage()
    # You may also log the response: response.getLog()

 

The  object includes data fields. For each request method, the response data fields are different. Please refer to the Gigya GSResponse REST
 for the list of response data fields per method.API reference

For example - handling a  response:socialize.getUserInfo
The response of 'socialize.getUserInfo' includes a 'user' object.

https://developers.gigya.com/display/GD/Class+GSResponse+Python
https://developers.gigya.com/display/GD/Finding+Your+Data+Center
https://developers.gigya.com/display/GD/Class+GSRequest+PHP
https://developers.gigya.com/display/GD/Class+GSResponse+Python
https://developers.gigya.com/display/GD/Class+GSResponse+Python
https://developers.gigya.com/display/GD/Socialize+REST
https://developers.gigya.com/display/GD/Socialize+REST
https://developers.gigya.com/display/GD/socialize.getUserInfo+REST


1.  
2.  

3.  

4.  

# Sending 'socialize.getUserInfo' request
params = {"uid", "PUT-UID-HERE"}  // set the "uid" parameter to user's ID
request = GSRequest(apiKey,secretKey,"socialize.getUserInfo",params)
response = request.send()

# Handle 'getUserInfo' response
if (response.getErrorCode() == 0):
    # SUCCESS! response status = OK
    nickname = response.getObject("nickname")
    age = response.getObject("age")
    print "User name: " + nickname + " The user's age: " + age 
else:
    print "Got error on getUserInfo: " + response.getErrorMessage()
    # You may also log the response: response.getLog()

Optional - Incorporating Security Measures

Validating Signatures

The Gigya service supports a mechanism to verify the authenticity of the Gigya processes, to prevent fraud. When Gigya sends you information
about a user, your server needs to know that it is actually coming from Gigya. For that cause, Gigya attaches a cryptographic signature to the
responses that include user information. We highly recommend validating the signature. The  class is a utility class for generating andSigUtils
validating signatures.

For example, Gigya signs the  method response. The following code validates the signature received with thesocialize.getUserInfo
'socialize.getUserInfo' method response:

# Handle 'socialize.getUserInfo' response 
if (response.getErrorCode()==0): 
    # SUCCESS! response status = OK
    # Validate the signature:
    valid =
SigUtils.validateUserSignature(response.getObject("UID"),response.getObjec
t("signatureTimestamp"),
        secretKey,response.getObject("UIDSignature"))
    if (valid):
        print "signature is valid"
    else:
  print "signature is not valid" 

 

The parameters of the   method are:validateUserSignature

UID - the user's unique ID
signatureTimestamp - The GMT time of the response in UNIX time format (i.e. the number of seconds since Jan. 1st 1970). The method
validates that the timestamp is within five minutes of the current time on your server.
secretKey - The key to verification is your partner's " ". Your secret key (provided in BASE64 encoding) is located at theSecret Key
bottom of the  section on Gigya's website (Read more ).Dashboard above

Signature validation is only necessary and supported when validating the signature of a response that was received on the client side
and then passed to the server. Server-to-server calls do not contain the UIDSignature or signatureTimestamp properties in the
response.

https://developers.gigya.com/display/GD/Class+SigUtils+Python
https://developers.gigya.com/display/GD/socialize.getUserInfo+REST
https://developers.gigya.com/display/GD/Class+SigUtils+Python#ClassSigUtilsPython-validateUserSignature
https://console.gigya.com/Site/partners/Dashboard.aspx


4.  UIDSignature - the cryptographic signature.

All the parameters, with the exception of the , should be taken from the 'User' object received with the 'getUserInfo' method response.secretKey
The method returns a Boolean value, signifying if the signature is valid or not.

In a similar fashion, when using the 'getFriendsInfo' method, The method response include a collection of 'Friend' objects. Each  willFriend object
be signed with a cryptographic signature. To verify the signature of a friend object, please use the method. validateFriendSignature

Sending Requests over HTTPS

If you would like to use Gigya service over HTTPS, you will need to do the following:

Create a  object using the constructor that receives five parameters. The additional fifth parameter is a Boolean parameter named GSRequest use
. Set this parameter to be HTTPS true.

Appendix - Publish User Action Example

The following code sample sends a request to publish a user action to the newsfeed stream on all the connected providers which support this
feature.

The  method has a complex parameter called  which defines the user action data to be published. To definesocialize.publishUserAction userAction
the userAction parameter create a JSON object and fill it with data. Fill the object with data as shown in the example below:

# Publish User Action

# Defining the userAction parameter
userAction = {"title":"","userMessage":"This is my user
message","description":"This is my description",
   
"linkBack":"http://google.com",{\"src\":\"http://www.f2h.co.il/logo.jpg\",
\"href\":\"http://www.f2h.co.il\",\"type\":\"image\"}}

# Sending 'socialize.publishUserAction' request
params = {"userAction":userAction, "uid":"PUT-UID-HERE"}
request = GSRequest("PUT-YOUR-APIKEY-HERE", "PUT-YOUR-SECRET-KEY-HERE",
"socialize.publishUserAction", params)
response = request.send()

 

To learn more about publishing user actions, please read the  guide.Advanced Sharing

https://developers.gigya.com/display/GD/Friend+JS
https://developers.gigya.com/display/GD/Class+SigUtils+Python#ClassSigUtilsPython-validateFriendSignature
https://developers.gigya.com/display/GD/Class+GSRequest+Python
https://developers.gigya.com/display/GD/socialize.publishUserAction+REST
https://developers.gigya.com/display/GD/socialize.publishUserAction+REST#socialize.publishUserActionREST-UserActionXML
https://developers.gigya.com/display/GD/Advanced+Sharing

	Python

